Judging Criteria for All projects

Judging a science project involves judging whether the student has explored the problem with a scientific approach. A simple project done well should receive a higher score than a complicated, "significant" project done poorly. The score for all projects is divided into six sub-scores. Each subscore evaluates a different part of the overall scientific approach. Those scores will be determined by examining each part of the student's project and presentation.

1. Creative Ability (30 points)

- Problem
 - Is this a new problem? If not, is it an original or unique approach to solve an old problem?
- Hypothesis
 - Does the hypothesis suggest an original or unique solution to the problem?
- Equipment
 - Is project equipment and project material utilized in an ingenious manner?
 - Is the equipment built from a kit, involve parts of a kit, or parts of a packaged project?
- Project Design
 - Does the project design demonstrate the student's creative involvement?
 - Is the student aware of other ways to accomplish the same result?
 - Is it evident that the project required student to explore beyond the classroom?
- Analysis / Conclusion
 - Has the student used an original or unique method of evaluating the data and drawing conclusions?
- Display / Presentation
 - Does the project presentation or display demonstrate a creative or unusual approach?

2. Scientific Thought (30 points) - not used for Engineering Projects

- 1. Problem
- Is the problem stated clearly and unambiguously?
- Was the problem sufficiently limited to allow a plausible approach?
- 2. Background Research

- Does the student understand the project's ties to related research?
- Did the student cite scientific literature, or only popular literature?
- Does the project show depth of study and effort?
- 3. Hypothesis
 - Hypothesis is clearly stated and the project is clearly designed
- 4. Project Design
 - Was there a procedural plan for obtaining a solution?
 - Are the variables clearly recognized and defined?
 - If controls were necessary, did the student recognize their need and were they correctly used?
 - Were the scientific procedures appropriate and well organized?
 - Were sampling techniques and data collection appropriate for the problem?
- 5. Data/Analysis
 - Are there adequate data to support the conclusions?
 - Does the student recognize the data's limitations?
- 6. Conclusion
 - Does the student have an idea of what further research is warranted?
 - Are the conclusions formulated logical, based on the data collected and relevant to the hypothesis?
 - Do the conclusions show evidence of understanding that unanswered questions remain?

3. Engineering Goals (30 points) - Engineering Projects Only

- 0. Objective
 - Does the project have a clear objective?
 - 1. Relevance
 - Is the objective relevant to the potential user's needs?
 - 2. Design Process
 - Does the project follow the scientific method?
 - Are the conclusions logical and based on the data collected?
 - Were the testing procedures appropriate? Well organized?
 - Do the conclusions meet common sense criteria?
 - Do the stated conclusions show evidence of the student understanding that unanswered questions remain?
 - 3. Feasibility
 - Is the solution workable, acceptable to the potential user, and economically or ecologically feasible?
 - 4. Performance
 - Are the testing procedures appropriate and well organized?

- Is the solution a significant improvement over previous alternatives?
- Has the solution been tested for performance under the conditions of use?
- 5. Marketability
 - Could the solution be utilized successfully in design or construction of an end product?
 - Has the process or product been tested? Is the concept ready for market?

4. Thoroughness (15 points)

- 0. Background Research
 - Is it apparent the student spent considerable time on the project?
 - Is the student aware of other approaches or theories?
 - Is the student familiar with scientific literature in the studied field?
 - 1. Completeness
 - Is the study complete? Within the scope of the problem?
 - Does the project exhibit orderly recording? Is the collected data analyzed properly?
 - How complete are the project notes?
 - 2. Reproducibility
 - Does the student understand the necessity of repeated experimentation?
 - Were the experiments repeated to ensure that the results were consistent?

5. Clarity (15 points)

- 0. Written Materials
 - Are the title, hypothesis, purpose, procedures and conclusions clearly outlined?
 - Is there a working logbook?
 - Was the logbook obviously used as a project tool?
 - Is the final report notebook well organized, accurate, easy to read?
 - How clearly is the data presented?
 - How clearly are the results presented?
 - Does the written material reflect the student's understanding of the research?
 - 1. Backboard
 - Are the title, hypothesis, purpose, procedures and conclusions clearly outlined?

- Are the important phases of the project presented in an orderly manner?
- How clearly is the data presented?
- How clearly are the results presented?
- How well does the project display explain the project?
- 2. Presentation
 - How clearly does the finalist discuss the project and explain the purpose, procedure, and conclusions?
 - Can the student discuss the project without resorting to notes or prepared speeches?
 - Was the presentation done in a forthright manner, without tricks or gadgets?
 - Can the student make a complicated subject understandable to the layman (judge)?

6. Skill (10 points)

0. Equipment

- Were special skills needed for the conception, construction, or use of project components?
- Were special test equipment methods and equipment conceived, designed or fabricated by the student?
- Does the student have the required laboratory and / or technical skills to obtain supporting data?
- Was the project completed under adult supervision, or did the student work largely alone?
- 1. Procedures/Analysis
 - Were special mathematical, computational, or observational skills evident?
 - Were special skills needed for the conception or use of project components?
 - Were special skills needed for the care of living organisms, or treatment of subjects?
 - Do you feel that the project in front of you corresponds to the students capability as demonstrated to you?